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STABILITY OF COMPRESSED VISCOELASTIC ORTHOTROPIC SHELLS 

V. D. Potapov UDC 624.071.4+539.411 

The stability criterion for structures operating under creep conditions, which is based 
on comparing the unperturbed and perturbed motion trajectories, is proposed in [i, 2]. On 
the basis of this criterion, the singularities in the behavior of compressed viscoelastic 
thln-walled shells are analyzed in this paper. 

The equilibrium and strain compatibility equations of thln-walled shallow shells with 
the interlayer shear taken into account according to the Timoshenko hypothesis are written 
in the form [3, 4] 

h [r~3~ (y~,~ + u3,.) + r~_ ~ (y~_,. + ~,2_~)] + ~ + (u~ + u o), , N,j = 0, 

, I 
Dn11?l,l! -5 Dn22?2A2 ~-T D12(2 (Yf.22 -5 y2.1_o) ---- hr3i3! (?1 -5 U3,t), 

t D 

[KmtF,2222-~-2 (Ki2t2 + Kll~2) F,~122 + K n n  F.ttti] = - -  ellen u3.i~ + 
h 

0 

(1) 

0 
where y i are the angles of rotation of the normal to the middle surface; ua, ua are the addi- 
tional and initial shell deflections; F is a function of forces acting in the middle surface, 
Nij = eikejZF,kl; h, R ij are the thickness and radii of curvature (R,a = Ra, - ~); KiJk~, 
rljkZ are operators of the form 

t 

K~ia, f = i--i- f (t) -5 S K~ja, (t - -  ~) / (~) d'~, 
Ei jk l  o 

t 

r~ikzl  = c~jhd (t) - -  .f r~jh~ (t - ~) / (~) dr; 
0 

EijkZ , Cijkl are elastic constants; KiJkZ(t -- r), rljkZ(t -- T) are the creep and relaxation 
kernels which are Invarlant relative to the origin: 

co oo 

o 

h. [ I, i >k 
Dijkt = -ff Fijkz, elh = O, i = k [ --i, ~ < k .  

Here and henceforth the summation is over the repeated subscripts. The subscripts fol- 
lowing the comma denote differentiation with respect to the appropriate coordinate. The xL, 
Xa axes coincide with the lines of principal curvature and the axes of viscoelastic symmetry, 
while the x a axis is perpendicular to them and directed toward the center of curvature. 
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Let us assume that small initial perturbations in the shell deflection 6u~ occur in ad- 
dition to the deflection ~. The perturbations in the additional deflection ~%, the angles 
of normal rotation ~Yi, and the force function ~F are found from the equations 

h [r313i (6w,l + 6u3,11) + r32~o. (8~2 ,2  AC 6U3,22)1 -]- 

+ + (,~ + ~ ) , ~  61'% + x~(6~ ,  + 6~~ = o, 

, i D12i2 (6yi,22 ~ 672,12) hI~3t31 (571 + 6U3,t), Dtt t t~ '~ t , l i  ~- Dt122~'t~2,12 -7- -~ ~-- = 

, t 
D221t6~'i,i2 + Dsz22672,z2 T -~ Di2i2 (67i,~2 ~- 6y2,11) = hF32n (6"7~ + 5u~,z), 

[Kil i t6F'2222 + 2 (Kt212 -~- Ktt22) 6F'1122 + K22226F'tl t i]  = 

- -  U3,kl~g3,ij 

(2 )  

Let us consider a circular cylindrical shell, hinge-clamped along the ends and compressed 
uniformly in the axial direction by a load q. Let us assume that 

o ~ ~ h t  ~ �9 , . . .  
= s l n - - ~ -  a l  ( 3 )  

m 

(Z is the shell length and the xl axis is directed along the generatrix). We have the equa- 
tions 

to determine 

' [ ' K - i  ] ' U 3 ) ' t t  T K2222us  = 0 ,  
t ( u  s 0 h , 0 , h - -1  

Dtt t lU'3,1111 "7- D t t l t K 3 t 3 t  -~- q -T 

F ' I I  = - -  h Kg-~I2ua 

u~ and F from the system (i). It is evident that 

u8 = h$ m sin "7- xl. 
m 

(4) 

Let us assume that 

Let us 

Solving ( 2 )  , we 

< x , ,  = , 1  
k 

seek ~u3, ~y~, ~y~ in the form 

t~U~l ~ Z ck s i n  k~ n - 7 -  x l  cos -~  x~, 
h 

~ ~ ( t )  k~ k~  n 
8~,~ Z,i'h T o ~  - -  X 1 6OS ~ X2~ 

h 

" ~ r ( 2 )  n k~ �9 n 
6y .~  = Z.~ - -h  - ~  s in  -7- x l  sin --~ x ~ .  

obtain 

~'~'~h~r~('y -, ) a~,~ (l  -- czar) c~ + -- [cos (s + k + in) ~ - 11 ----@--[[-~ K2222~,~ Ck -4- 
k ,  I'tl 

(5) 
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+__~. (~m , ~m)(A~niCh)](s.6kq_m)(s_k_~m)(s.6k_m)(s__k_m)O l ~- 

t [ (ra § k)~ 
-~-Z k ' ( s - ~ k + m ) ( s - - k - - m )  B ~ i ( ( ~ m + ~ ~  - 

)]} - -  a , ( s - a + m ) ( s + a - m )  B F ~ ( ( ~ m q - ~ ~  c~ § 

+ 

- -  ( D t t i t  s2g~ � 9  -{- ~ Dt2t2 -~- hF3t31) r~l) -~- 

+ ~-~ D1t22 + y Di2 ,2  = hr~3~c. ,  

" l  e e l i 2 2  ~-~-~I)1212 - -  D2222"-~ " - ~ - ~ D 1 2 t 2 - ' ~ h l " 3 2 3 2  - s  --  - -  hr3232Cs, 

(6) 

where E is the value of a certain reduced elastic constant; 

z * 
Aan = ~ h ~  E [ K m l 0 ~ n  + 2 (Kt2t2  + Kii22)  02n + K2222] ; 

l ~ ~ m m 

0 ~ -  ~h-'nz s ~" - -  (k + m) ~ # 0, s ~ - -  (k - -  m) 2 ~ 0; 

Gshmi = S [cos  (S k - -  m - -  i) ~ x  - -  co s  (s - -  k -~ m + i)  ~ x  - -  
o 

+ c o s  (s  - -  k = m - -  i) ~ x  - -  co s  (s - -  k - -  m + i) ~x] dx; 

Tskml = ~ [cos  (s : -  k -~- m - -  i) g z  - - c o s  (s -~- k -~- m. i) g z  - -  
o 

+ c o s  (s - -  k - -  m - -  i) ~ x  - -  cos  (s - -  k - -  m q- i) nx] dx; 
r 

/r [ D i l l l  s ' n '  v ( i )  s=:~n~ D ' (i) rT))_ a~.  (1 -- a ~ , )  c ,  T f  = - '~ ' - - '~s  q- ~ ( 12t2 -T Dt122) ( l"s  - -  

n ~ r~2)  Eh----t s2n " ] 
-- D2222 - ~  ~ .qsn Cs .2- "--'7" qC s �9 

The series of d$ts in the right side of (6) denote components dependent on the quantity c~. 

Keeping one member in the sum (3) for a long shell, (6) is written as follows (m is odd, 
k ~ m/2): 

asn (1 - -  O:sn)C s ~ ~ n2h r  t x } t 
k s + k - - r a  

i 

- -  ( ~ )  ( ~ m ' - ~ ~  B l t ) [ ( ~ m - ~ ~  ~ C ~  gxdx  . . . .  . ~h 2n2h 2 

0 
(7) 

Replacing the operators PiJkl, Ki~kl in (6) and (7) by the elastic constants and equat- 
ing the determinant comprised of coefflcients of c k to zero, we obtain an equation to find 
the critical value of the deflection ~ for a fixed load q and, conversely, the critical val- 
ue of the load q for a fixed deflection $~. 

If k and s are close together, then asn~a = const, esn ~ekn = e , asn~ a = const. 
The determinant of the system of equations (7) then has the form 
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�9 ~§ ~1~ ~/a  l - - I  

~I~ ~ + ~ / a  ~ - - I  --~/~ . 
~/~ i l - -  ~ --~/~ --~/~. 
i - - t  - -ga  ~ - - t /~  --~/~. 

. - - i  --V~ --~I~ - -~I~ ~--~I~. 

= O, (8) 

where 

= 

It hence follows that 

4 n 4 h  2 - o 
- - a ( t - - a ) + y .  y=._.ff~__(BT-t + B{-~)(~m +~,n)-; 

Z * 

~'~ r E2~_.~ o 8(~,,, ~- ]. < =  ~ L - - - 7  +~ + , ~o) ~-~ 

R~ �9 -~ ~.+8(~.+~~ -~ --~(~--~):0. (9) 

It is interesting to compare the values of Xmax which correspond to different orders of 
the determinant (8). 

We have ~I = I; XIII = 1o569; IV = 1.571; %IX = 3.1415926/2 from an examination of de- 
terminants of ist, 3rd, 5th, and 9th orders 

Values of Sm + ~ calculated from determinants of the system (6) (columns 3, 4, and 5) 
for an isotropic shell from an incompressible material without taking account of shear of 
layers with the geometric characteristics ~R/Z = I, R/h = 147~ m = 21 are presented in Table 
1 to estimate the error induced by replacing a finite shell by an infinite shell. The val- 
ues of s and k in Table 1 correspond to the ordinal numbers of the components in the sum (5). 
The parameter n corresponds to the least value of the dimensionless shell deflection Sm + $~. 
Values of ~m + ~ found from (9), which becomes in this particular case 

O~-~ ~ 4 ~ [ 0 + 0 ~ ) - 2 + ( 9 +  ) ~ ( + ~ ~  

where 

+ ~) ~ (~- ~) = o, (io) 

"1 3 n2h ,k-= ~. - - a - -  ~- [(i + 0=)~/4 + 4 (t + O=)-q, ~ = --  o~,j2a, ~l = "~ 0=,~ = -N- 

are contained in column 2. 

As is seen from Table i, the magnitudes of the critical parameters for the two shells 
are close together. Therefore, in some cases the stability investigation of a shell of fi- 
nite length can be replaced by the solution of an analogous problem for an infinite shell. 

Let us examine three shells possessing different viscoelastic properties. 

Example I. The shell is orthotropic, where the operators r::,~, Faa=~, F~:a~ equal the 
-=s, r (~) = %] is con- elastic consti~ts identically. The Kirchhoff--Love hypothesis [r~ I) = 

s 
served. Then the quantity ~m + ~ is constant for a fixed load. The shape of the initial 
deflection agrees with the axisymmetric mode of ideal shell buckling. 

~qe find from (9) the value of ~corresponding to the instantaneous (t, = 0) buckling of theaxi- 
symmetric equilibrium mode for a given value of the parameter ~m' For a shell with the char- 
acteristics E~aaa = Et1~ = E, E:laa =-~E in Fig. i, 
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Fig. i 
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Fig. 2 
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Fig. 3 

( ~  

0,9 
0,8 
0,7 
0,6 
0,5 
0,4 
0,3 
0,2 

0,04.80 (n=tl) 
0,t0t0 (n=lt) 
0,1635 (n= 1t) 
0,2406 (n=lt) 
0,34t9 (n~ t0) 
0,4785 (n= i0) 
0,717t (n=9) 
1.3415 (n=7) 

s, h = t t  

0,0816 (n=lt) 
0.t869 (n=lt) 
0,3659 (n= 10) 

$ 

s, h=9,  t t ,  t3 

0,0485 (n=lt) 
0,1015 (n=tl) 
0,t642 (n=ll) 
0,24t8 (n=tt) 
0,3420 (n=tO) 
0,4807 (n=tO) 
0,722t (n=9) 
1,3586 (n=7) 

5 

s, h=7, 9, t t ,  t3, 15 

0,0485 (n=ll) 
0,t014 (n=tt) 
0,t640 (n=tt) 
0,2415 (n= Ii) 
0,34tl (n=tO) 
0,4796 (n= I0) 
0,7t93 (n=9) 
1,3474 (n=7) 

~1~1~/E= 0.346154. F121~/E --  0.207692, v= 0, i3 ,  B / h  = lO0, 

curve i corresponds to the dependence u m ~ ~. 

To estimate the shell stability for large values of the time t, we use the property of 
invariance of the kernels K1axa(t -- z) and r,a12(t -- T) relative to the origin and we trans- 
fer it to -~. As is known [5], the solution of (7) for a fixed parameter a m is bounded (con- 
stant) for values of ~ less than those calculated as roots of an equation similar to (9) and 
obtained by replacing E:a:a therein by the creep shear modulus E~= = E:ala -- r:=~. For 
values of a m and $~ which are a root of the equation mentioned, creep buckling (t, = ~) of the 
axisymmetric equilibrium mode occurs. Curve 2 in Fig. i corresponds to the relationship be- 
tween these $ L and a m. The mode of such shell buckling can be different from the inStantane- 
ous buckling mode because of the different n. 

An analysis of the results shows that the shell buckles at the time of load application 
for am, ~ belonging to the domain I (see Fig. i). If a point with the coordinates ~m, ~ 
is taken from domain III, then the shell is stable for any time t. Here Lyapunov stability 
[6] is conserved. Finally, if a point of the domain II is considered, then the additional 
perturbation of shell deflection increases without limit for appropriate values of am, ~ and 
an unbounded increase in the time. It can be shown that the structure is Lyapunov unstable 
for the selected parameters ~m, $~, but the shell is stable in any previously assigned inter- 
val of the time t [I]. 

Let us note the qualitative agreement between the results and analogous indices for rods. 
The domain of external load variation for them is also divided into three parts (if the lin- 
ear problem is solved for any small initial curvatures). 

Example 2. The shell is isotropic and the interlayer shear is not taken into account. 
For simplicity the material is considered incompressible. The mode of the initial deflection 
agrees with the axisymmetric buckling mode for an ideal shell. 

By analogy with the preceding case, we determine the values of the parameters ~m, ~ 
corresponding to the instantaneous and creep bucklings of a shell with the characteristics 
R/h = 147, F/E = 0.5 (Fig. 2, curves 1 and 2). 
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For values of ~m, ~ corresponding to points lying below curve i, the shell can buckle 
by a "snap" after the lapse of a certain finite time t, called the critical time [!, 2]. To 
obtain t, it is sufficient to equate the determinant comprised of coefficients of the quanti- 
ties c k in (7) to zero by assuming the operators F ijk~ , K..ijkl to be identically, equal to the 
elastic constants, but the quantities ~m are considered functions of tNe time t. Under these 
conditions an equation is obtained which agrees with (9) or (i0). 

An analogous equation to seek the critical time for unbounded creep of the material has 
been obtained in [7] where the criterion of bifurcation of the equilibrium state is used. 

The lower boundary of the buckling domain for a finite time t, corresponds to those val- 
ues of the parameters am, ~ for which t, tends to infinity. The function ~m + ~m has a con- 
stant (finite value) o ~ . ($m + ~m)~ for the am, Sm conszdered. Substituting this expression into 
(i0), we obtain the relationship between a m and ~, shown by curve 3 in Fig. 2. Thus, the 
domain of variation of the parameters a m , ~ is divided into four parts. In addition to those 
zones which had been determined in the previous example, a buckling zone for the finite time 
t, (zone IV) is added. 

The shell is transversely isotropic. The time-change in just the interlayer 
= r v shears (r~s~ = r,a,~ ) is taken into account. 

For such a shell the expressions asn, asn, Akn, B~, Ba have the form 

= . 2  + ..... 2 § + • 

' 1 . _ o  _ - - T  A A + ( i = - 0 , ~ )  -, = ~ = a , ~  ~ l' ~ q '  A 
2 2 t 2 ( t - - v  2) R 2 2 l A~, = ( l  + % ~ ) ,  A - ~h~ o ~ - ~  r ' ,  

"1=[02.'~-(-~--])212:,B2= [02n-j-(~-- ~)212 

(~ is the Poisson ratio). 

The parameter ~m is determined from (4) 

m4n~ R2h2 m%2ha ] 
12(1--v D l ~' - ? l ~  t2(1~ 'v  DI :~EK' ~rn-- 

[ m,~"-R2 m4~4 R2h~ ] 
~ + ~2 (~- ,~ , )  ~ ZK' -~  (t,. + ~ )  = 0. 

Curves analogous to curves 1-3 in Fig. 2 (Example 2) are shown in Fig. 3 (R/h = 40; E/ 
Ea~3~ = E/E3a3a = 5; E/E3~3~ -- F' = E/E3aaa -- F' = 50) for the shell under consideration. In 
contrast to the two previous cases, in which the bending mode of the shell middle surface re- 
mains unchanged in the precritical state, curves 1-3 are constructed for different axisymmet- 
tic equilibrium modes in the shell under consideration. The axisymmetric mode of instanta- 
neous (t= 0) buckling of an ideal shell corresponds to curve 1 while the axisymmetric mode of 
creep (t = =) buckling corresponds to curves 2 and 3. For a fixed amplitude of the initial 
deflection, the vertical coordinates of points of curves 1-3 are the lower bounds for all 
values of the parameter am, which correspond to instantaneous or creep buckling of a shell 
possessing a sinusoidal initial deflection. 
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